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DECOMPOSITIONS OF HOMOLOGY MANIFOLDS 
AND THEIR GRAPHS 

BY 

D A V I D  B A R N E T T E '  

ABSTRACT 

The graph of every d-dimensional  convex polytope is d-connected and contains 
a refinement of the complete graph on d + 1 vertices. These two theorems are 
generalized to pseudomanifolds and to some very general decomposit ions of 
homology manifolds. 

1. Introduction 

Two of the most fundamental properties of the graphs of convex d- 

dimensional polytopes are that they are d-connected and that they contain a 

refinement of the complete graph on d + 1 vertices. These two properties have 

been shown to be true for the 1-skeletons of (d + 1)-manifolds, as well [1]. In this 

paper we give much simpler proofs of these properties for manifolds. We also 

consider what happens if our manifold is decomposed into faces that are more 

complex than simplices. We show that for some purposes, homology manifolds 
are the best setting to work in, and by the use of structures called gchc's, we 
develope a type of decomposition of a homology manifold that always admits a 

dual decomposition. Included in these structures will be the triangulations of 

homology manifolds, and these structures will have the above two graph 
properties. 

2. Preliminary definitions and lemmas 

We shall be dealing with various kinds of simplicial complexes and also more 

general decompositions of cells, manifolds, and homology manifolds. The 

remarks in this section apply to all of these, so we shall simply refer to these as 
complexes. 
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Two faces of a complex are said to be incident provided one contains the 

other. Two complexes are isomorphic provided there is a one-to-one, incidence 

preserving, dimension preserving, function taking the set of faces of one complex 

onto the set of faces of the other. The complexes are dual if there is a one-to-one 

incidence reversing function taking the set of faces of one complex onto the set 

of faces of the other. 

There are two incidence properties that all of our complexes will have, and we 

shall refer to them simply as the two incidence properties. For any complex C they 

are: 

(1) If F~ is a face of C and if F2 is a face of F,, then F2 is a face of C. 

(2) If F, and F2 are faces of C, then F, fq F2 is a face of both F~ and F2 (possibly 

the empty face). 

If F is a face of a complex then the star of F, denoted star(F), is the set of all 

faces that contain F together with all faces of these faces. The antistar of F, 

denoted ast(F), is the set of all faces that miss F. The link of F, denoted link(F), 

is the intersection of the star and the antistar. 

If our complex is d-dimensional, the faces of dimension d are called facets 
while the faces of dimension d - 1 are called subfacets. By a chain of facets we 

mean a sequence of facets F , , . . . , F ~  such that the intersection of any two 

consecutive facets is a subfacet. The complex is strongly connected provided for 

each two facets there is a chain of facets beginning with one and ending with the 

other. 

One complex S~ is a refinement of a complex $2 provided there is a 

homeomorphism of $2 to S~ such that the image of each face of $2 is the union of 

faces of S~. If the complex is a graph, then this definition is equivalent to the 

usual definition that Sj is obtained from $2 by adding vertices on edges of $2. The 

vertices of Sz that are images of vertices of $2 are called the principal vertices of 

Si. 

The graph of a complex is the graph formed by the vertices and edges of the 

complex. 

A pseudomanifold M is a finite simplicial d-complex such that 

(i) M is strongly connected. 

(ii) Every simplex in M belongs to a simplex of dimension d. 

(iii) Every simplex of dimension d -  1 belongs to exactly two simplices of 

dimension d. 

One type of pseudomanifold that we shall investigate is the homology 
manifold. A homology d-manifold is a connected compact topological m- 

dimensional polyhedron on which the local homology groups at each point are 
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isomorphic to-the respective homology groups of the ( m -  1)-sphere. A d- 

manifold is a connected compact space such that every point has a neighborhood 

homeomorphic to an open d-dimensional cell. A triangulated manifold is a 

manifold that is the union of the simptices of a finite simplicial complex. The 

class of homology manifolds includes all manifolds. 

3. Graphs of pseudomanifolds 

The theorem that the graph of a d-polytope is d-connected is easily 

generalized to pseudomanifolds, but first we need two lemmas. 

LEMMA 1. If V is a vertex of a d-pseudomanifold then the strongly connected 

components of the link, of v are (d - 1)-pseudomanifolds. 

The proof is very simple and is left to the reader. 

LEMMA 2. Let S be a strongly connected simplicial d-complex such that every 

simplex belongs to a d-simplex. Then, the graph of S is d-connected. 

PROOF. Let u and v he two vertices of S and let F ~ , . . . , F ,  be a chain of 

facets joining them. Consider any set of vertices that separates the graph of this 

chain. If the intersection of each two consecutive facets in the sequence contains 

a vertex not in the separating set, then these vertices are the vertices of a path 

from u to v. It follows that the intersection of some two consecutive facets in the 

chain has all of its vertices in the separating set. The intersections are subfacets 

and thus have at least d vertices. 

This lemma is a special case of a theorem by Sallee [7]. We included its proof 

here for completeness. 

THEOREM 1. The graph of a d-pseudomanifold M is d + 1 connected. 

PROOF. This is clearly true if d = 1 since then the pseudomanifold is a 

polygon. Proceeding by induction, let vl, v2,"  ", v, be a minimal separating set 

of vertices for the graph of M. We consider the link of vl. If the remaining 

vertices, v2,---, v, separate one of the strongly connected components of 

link(v1) then by induction there are at least d of them separating this component 

and thus there are at least d + 1 vertices in all. Suppose, now, that none of the 

strongly connected components of link(v1) are separated. We construct a new 

pseudomanifold M'  by removing v~ and every face containing it and inserting 

new vertices, one for each strongly connected component of link(Vl), and also 

add to the complex simplices that are the join of a simplex of a strongly 
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connected component of link(v1) and its new vertex (see Fig. 1). The vertices 

v2,"  ", v, separate the graph of this new complex, for, observe that when we 
remove v from the graph of M, the remaining vertices separate the graph that 

remains. Each strongly connected component of link(v1) determines a graph that 

lies in just one component  of the separated graph. If there is only one strongly 

connected component of link(vz), then v~ is joined only to one component  of the 

separated graph and thus v2," �9 ", v, separates the pseudomanifold, contradicting 

the minimality of v~,. . . ,  v,. If there are at least two connected components of 

link(vz) then v2,"  ", v, separate the graph of M'.  

It is easily checked that M'  is strongly connected, and by Sallee's theorem it 

requires at least d vertices to separate it, thus v l , . . . ,  v, contains at least d + 1 

vertices. 

This theorem immediately gives us the same result for homology manifolds 

and manifolds because they are all pseudomanifolds (see [5], ch. 7), however it is 

/)l  

\ 

Fig. 1. 
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interesting to see how simple the proof becomes when one deals just with 

homology manifolds. 

The nice property of homology manifolds that we use is that in any 

triangulation of the homology manifold, the link of each vertex is a homology 

sphere, and thus is a homology manifold of one lower dimension (see [4, ch. 2]). 

To prove the connectivity theorem in this setting, proceed as above with a 

minimal separating set of vertices. If v2," �9 ", v, do not separate link(v1) then vl is 

connected to only one component of the separated graph, thus v2 , ' " ,  v, 

separate the graph, contradicting the minimality of the separating set. But if 

link(v 0 is separated then by induction it takes at least d vertices to do it and we 

are done. It is interesting to compare this short proof with the long cumbersome 

proof in [1]. 

The second graph theorem for polytopes is even easier to generalize to 
pseudomanifolds. 

THEOREM 2. Each vertex of a d-pseudomanifold is a principal vertex of a 

refinement of the complete graph on d + 2 vertices. 

PROOF. The statement clearly is true for d = 1. Proceeding by induction, let v 

be a vertex of a d-pseudomanifold. The link of v has a strongly connected 

component that is a (d - 1)-pseudomanifold. By induction this link contains a 

refinement of the complete graph on d + 1 vertices. Since v is joined to each 

vertex of the link we are done. 

There are several other graph theorems for polytopes (see [6] and [7]). One, 

which is easily stated, was proved by Klee [5]. 

THEOREM 3. If  n vertices separate the graph of a d-polytope then the number of 
components of the separated graph is at most 

(1) 2, ifn--d, 
(2) the maximum number of facets of any d-poIytope with n vertices if 

n = > d + l ;  

furthermore, these bounds are sharp. 

This third graph theorem for polytopes is very troublesome for 

pseudomanifolds. The author conjectures the following: 

If  the graph of a d-pseudomanifold is separated by n vertices then the number of 
components is at most 

O) the maximum number of facets of any d-pseudomanifold with n vertices, if 

n > d + 1 and n is less than the minimum number of vertices necessary to 
triangulate the pseudomanifold ; 
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(ii) the maximum number of facets of any triangulation of the pseudomanifold 
with n vertices, when n is at least the minimum number of vertices necessary to 
triangulate the pseudomanifold. 

There is one case not covered in the above conjecture, and that is the one case 

we can establish. 

THEOREM 4. If the graph of a d-pseudomanifold is separated by d + 1 vertices, 
then it is separated into exactly two components. 

PROOF. The theorem clearly holds for d = 1. Proceeding by induction, let v 

be a vertex of a separating set of d + 1 vertices of a d-pseudomanifold. If some 

component of the separated graph did not meet link(v) then removing v from 

the separating set would produce a separating set of d vertices, contradicting the 

d-connectedness of the graph. By induction link(v) is separated into exactly two 

components thus there are exactly two components of the separated graph. 

4. Duality in homology manifolds 

All of the complexes that we have looked at so far have faces that are all 

simplices. If one wishes to generalize polytopes one would want the faces to have 

a wider range of structures. To do this we introduce generalized combinatorial 
cells (abbreviated gcc) and generalized combinatorial homology cells (ab- 

breviated gchc). 

A ( -  1)-gcc (gchc) is the empty set. A 0-gcc (gchc) is a point. Inductively, a 

d-gcc (gchc), C, is a closed d-cell (d-homology cell) whose boundary is the union 

of k-gcc's (gchc's), called faces, such that the two incidence properties hold. 

It is easily seen that any 2-gcc or 2-gchc is isomorphic to a polygon. It follows 

from a theorem of Steinitz [8] that any 3-gcc or 3-gchc is isomorphic to a 

3-polytope. In four dimensions, however, there are gcc's that are not isomorphic 

to 4-polytopes (see [2]). Many properties of gcc's are found in [3]. 

While the topologist loves to build things out of simplices, and once in a while 

cubes, the geometer may use a wider variety of building blocks through the use 

of gcc or gchc complexes. A d-gcc-complex is a collection of k-gcc's, - 1 < k _<- 

d, called faces of the complex, such that the two incidence properties hold. 

Substitute "gchc" for "gcc" and you have the definition of a d-gchc-complex. If 

the union of the faces of a d-gchc-complex is a manifold, homology manifold or 

pseudomanifold we call it a d-gchc decomposition of that manifold, homology 

manifold or pseudomanifold. The d-gchc decompositions of homology man- 
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ifoids are particularly nice because they all have dual d-gchc decompositions, a 

fact that we shall now establish. 

We shall need a few facts about homology spheres. 

LEMMA 3. The join of a point and a homology d-sphere or a homology d-cell 

is a homology (d + 1)-cell. 

LEMMA 4. The antistar of a vertex in a triangulated homology sphere is a 

homology ceil 

The first lemma is a standard theorem of homology theory. The second is an 

easy application of Mayer-Vietoris sequences using the fact that the star of a 

vertex is a homology cell and the link is a homology sphere. 

LEMMA 5. If V is a vertex of a d-gchc C then there is a triangulation of C 

having the same vertices as C and such that the star of v in C and in the 

triangulation of C are the same set. 

PROOF. Our proof is by induction on the dimension of C. For d = 1 the 

statement is clearly true. If C is a d-gchc, d > 1, then by induction we may 

triangulate the antistar of v in C using only vertices of C. Now we triangulate C 

by taking the join of v with each face in the antistar of v. By Lemma 3 this join is 

homeomorphic to star(v), which it replaces. 

LEMMA 6. If  v is a vertex of a d-gchc-complex C, then there is a triangulation 

of C using only vertices of C such that the star of v in C.and the star of v in the 

triangulation are the same set. 

PROOF. Our proof is by induction on the number of vertices of C. By 

induction we can triangulate the antistar of v. We obtain the desired triangula- 
tion by taking the join of v and faces in the induced triangulation of the link of v. 

From the previous lemma we immediately get 

THEOREM 5. The link of a vertex in a d-gchc-decomposition of a homology 

manifold is a homology sphere. 

PROOF. The link of a vertex in any triangulation of the homology manifold is 

a homology sphere, but the link in the d-gchc decomposition is the same set as 

the link in a triangulation. 

The dual of certain gchc-complexes will be constructed through the use of 

barycentric subdivisions. Each face F of a d-gchc-complex C will be associated 

with a point p~, called its barycenter. We partially order the barycenters by 

pP < pc if and only if F is a face of G. The simplices of the barycentric subdivision 
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of C are the simplices determined by the linearly ordered sets of barycenters. It 

is an easy exercise to prove that the barycentric subdivision is homeomorphic to 
C 

The barycentric star dual to a face F of C is defined to be the set of all 

simplices of the barycentric subdivision, whose last vertex is the barycenter of F. 

If v is a vertex of a d-gchc-complex C then by Lemma 4 the antistar of v in 

any face meeting v is a homology cell. The vertex figure of v in G is the 

gchc-complex consisting of all such antistars. 

THEOREM 6. The set of barycentric stars of a d-gchc-decomposition of a 

homology manifold M is a d-gchc-decomposition of M, that is dual to the original 

decomposition. The facets of the dual decomposition are dual to the vertex figures 

of the vertices of the original decomposition. 

PROOf. Our proof is by induction on the dimension of the homology 

manifold. For d _-< 2 the theorem is well known. For d > 2, let v be any vertex of 

our manifold and let S be its barycentric star. For any barycenter p~ of a face F 

meeting v, let A~ be the antistar of v in F. We now consider the barycentric 

subdivision of the boundary of S. For each face Ar  of S let q~ be its barycenter. 

We now have a one-to-one correspondence between the vertices of the 

boundary of S and the vertices of the barycentric subdivision of the vertex 

figure. We now show that this correspondence is an isomorphism. Suppose that 

pF1, p~2,'" ", pFk is a linearly ordered set of vertices determining a face in the 

boundary of S. Then Fi is a face of F(i + 1) for all 1 =< i =< k - 1. It then follows 

that AF~ is a face of AF, .~ in the vertex figure for all l _ -< i=<k-1 ,  thus 

q ~ , ' "  ", qFk determines a simplex in the barycentric subdivision of the vertex 

figure. This shows that a set of vertices determines a face in the barycentric 

subdivision of the vertex figure if the corresponding vertices determine a face in 

the boundary of S. The converse is proved in the same way and it follows that the 

two complexes are isomorphic. 

As sets, the vertex figure and the link of v in M are the same, thus the vertex 

figure is a homology sphere. From the above, it follows that the barycentric star 

dual to the vertex is a homology cell. 

Consider any face F meeting v. Its barycentric star will be a subcomplex of the 

boundary of S, and it will correspond to the barycentric star dual to the face AF 

in the barycentric subdivision of the vertex figure, through the one-to-one 

correspondence we have set up for vertices. Since our choice of v was arbitrary, 

it follows that all barycentric stars in the barycentric subdivision of M are 

homology cells. 
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It is easily checked that the set of barycentric stars satisfies the two incidence 

properties and that incidences of the stars are the reverse of the incidences of the 

original faces of M, thus the set of barycentric stars forms a dual gchc 

decomposition of M. The above-mentioned correspondence between the stars 

dual to the faces meeting v in M, and the barycentric stars in the subdivision of 

the vertex figure shows that the facets of the dual gchc decomposition are dual to 

the vertex figures. 

In order to get our graph theorems for gchc decompositions of homology 

manifolds we use the vertex figures instead of the links of vertices. It is 

immediate that the link of a vertex v is a refinement of the vertex figure of v and 

that the principal vertices of the refinement are just the vertices joined to v, thus 

we may use the fact that the link contains a refinement of the graph of a 

homology sphere and proceed by induction as we did in the previous theorems. 

We therefore have 

THEOREM 7. The graph of a d-gchc decomposition of a homology manifold is 

(d + 1)-connected and contains a refinement of the complete graph on d +2 

vertices. 

In particular, the graph of a d-gchc is d-connected, since its boundary is a 

(d - 1)-gchc-sphere. From this one can generalize Sallee's theorem: 

THEOREM 8. If C is a strongly connected d-gchc-complex in which each face 
belongs to a d-face, then the graph of C is d-connected. 

REMARKS. (1) Manifolds with boundaries do not provide as rich a hunting 

ground for new graph theorems as one might think. By Sallee's theorem a 

triangulated d-manifold with boundary is d-connected and easy examples show 

that this is best possible. One can prove, using our techniques of looking at the 

graph of the link, that if d vertices separate the graph of a d-manifold with 

boundary, then all separating vertices lie on the boundary. 

(2) Perhaps the ultimate complex would be a d-gchc-pseudomanifold, i.e., a 

strongly connected d-gchc-complex in which each (d - 1)-face belongs to exactly 

two d-faces. A slight modification of our methods will prove that these, too, 

have the two graph properties of pseudomanifolds. 
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